Topics

Updates

- Specifications
- VFB (VA Frontend Board)
- VARC (VA Readout Controller)
 - > Time Stamping
 - > Clock receiver/emulator
 - > VME Interface / VME Crate specs
 - > Sparsification
- VMM (VARC Mezzanine Module)

Oct 99 Review followup

- Hardware vs Software trigger
- Calibration issues
- VA Pedestal drift, stability, common mode noise, etc
- Time stamping
- Other

Schedule

- VA-DAQ tests
- Prototype electronics
- Production
- Installation / prototype electronics at Soudan

Oct 99 Review issues (Not exhaustive list)

- Hardware vs Software trigger (J.Dawson, B. Foster, R. Tschirhart, ..)
 - Far detector is dominated by singles (< 1 kHz/PMT)</p>
 - ➤ 1 Hz cosmics used for calibration → must be near live between spills.
 - Software (processor farm) is adequate to trigger cosmics, neutrino events,
 - Hardware trigger would require engineering effort with no obvious benefit.
 - > Software trigger is long standing MINOS Far Detector decision
- Calibration strategy (A. Para, J. Dawson, ...)
- Timestamp improvements (B. Foster, ..)
- "Electrical" issues
 - ➤ Grounding, shielding, pickup, etc.
 - > HV Ground loop isolation, ground resistors (K. Lang)
 - > Clock signal skew in VME crate (B. Foster)
 - > VA chip bias uniformity (J. Cobb)
 - Analog cable dispersion & settling : Would we benefit from cable equalizers? (B. Foster)
 - > Other electrical issues...
- Other...

Specifications

PMT Anode signal

• Nominal gain 1e6 (minimum gain 0.5e6) ie

→<=2:1 pixel gain spread among all 3 PMTs in a MuxBox

• Single pe charge 160 fc (80 fc min)

• Full scale charge 150 pe , 24 pc (12 pc min)

• ADC resolution 14 bits (16k counts)

• ADC scaling 1 ADC count = 1.5 fc

• " 1 pe = 106 (53 min)

• enc (thermal) ~< 1fc, < 1 ADC count

• pedestal width 2 – 4 counts (* Discussion follows)

• 2% - 4% pe (nominal) 4%-8% (wc)

PMT Dynode signal (ASD-lite)

• Nominal gain 500e3 (250e3) {(Gd-1)/Gd}*Ganode

• Single pe 80 fc (40 fc min)

• enc (ASD-lite) ~1/2 fc

• SNR 80 min

• Output LVDS

VFB update

- 3" x 8" card
- (3) VA Chips
- 4-channel dynode trigger (ASD-lite); Tests in progress (Roy Lee)
- Programmable VA bias via serial slo-control
- (3) PIN Diodes/amplifiers
 - Circuits prototyped (P. Smith Sussex)
 - > up to 20x gain
 - > enc << 1 fc (See P. Smith for details)
 - inexpensive dual opamp (OPA2350) 5nv/rt(Hz), ft=38 MHz, single supply – rail-to-rail (5V)
- Schematics complete (Phil Sullivan Oxford)
- Layout in progress (Phil Sullivan)
- Mux-box interface conceptual (and physical) design (U. Texas, U. Indiana) near complete

VARC Update

- (6) VMMs per VARC 1 VMM per 2 VFBs
 - o VMM: Dual VA Receiver
 - o 14 bit, 10 MHz ADC (Analog Devices)
 - +/- 5V low dropout regulators for power supply noise isolation
 - o All analog components on VMM, none on VARC.
- Timestamp resolution enhancement 3.125 ns → 1.5 ns (Nathan Felt)
- VME interface / Crate Spec (Nathan)
- VA common mode noise, cm noise suppression (Roy Lee)

Prototypes in 2000: Components purchased for

- 5 VARCs
- 15 VMMs
- 30 VFBs
- 30 Cable sets; Power, Control, Analog

- > Soudan Installation & checkout personnel
- ~1FTE
 - ➤ Roy Lee Post Doc
 - ➤ Mark Szigety Graduate student
 - > Andre Lebedev Graduate student
 - > Nathan Felt Engineer
 - > John Oliver Engineer